library("tidyverse")
library("tibble")
library("msigdbr")
library("ggplot2")
library("TCGAbiolinks")
library("RNAseqQC")
library("DESeq2")
library("ensembldb")
library("purrr")
library("magrittr")
library("vsn")
library("matrixStats")
library("dplyr")
library("grex")
library("survminer")
library("survival")
Create a function for downloading TCGA gene expression data.
For more detailed documentation, refer to
2. Differential Gene Expression Analysis - TCGA.Rmd
.
query_and_filter_samples <- function(project) {
query_tumor <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Primary Tumor"
)
tumor <- getResults(query_tumor)
query_normal <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Solid Tissue Normal"
)
normal <- getResults(query_normal)
submitter_ids <- inner_join(tumor, normal, by = "cases.submitter_id") %>%
dplyr::select(cases.submitter_id)
tumor <- tumor %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
normal <- normal %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
samples <- rbind(tumor, normal)
unique(samples$sample_type)
query_project <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = c("Solid Tissue Normal", "Primary Tumor"),
barcode = as.list(samples$sample.submitter_id)
)
# If this is your first time running this notebook (i.e., you have not yet downloaded the results of the query in the previous block),
# uncomment the line below
# GDCdownload(query_project)
return(list(samples = samples, query_project = query_project))
}
Download the TCGA gene expression data for colorectal cancer (TCGA-COAD).
projects <- c("TCGA-COAD")
with_results_projects <- c()
samples <- list()
project_data <- list()
for (project in projects) {
result <- tryCatch(
{
result <- query_and_filter_samples(project)
samples[[project]] <- result$samples
project_data[[project]] <- result$query_project
with_results_projects <- c(with_results_projects, project)
},
error = function(e) {
}
)
}
Running the code block above should generate and populate a directory
named GDCdata
.
Construct the RNA-seq count matrix for each cancer type.
tcga_data <- list()
tcga_matrix <- list()
projects <- with_results_projects
for (project in projects) {
tcga_data[[project]] <- GDCprepare(project_data[[project]], summarizedExperiment = TRUE)
}
for (project in projects) {
count_matrix <- assay(tcga_data[[project]], "unstranded")
# Remove duplicate entries
count_matrix_df <- data.frame(count_matrix)
count_matrix_df <- count_matrix_df[!duplicated(count_matrix_df), ]
count_matrix <- data.matrix(count_matrix_df)
rownames(count_matrix) <- cleanid(rownames(count_matrix))
count_matrix <- count_matrix[!(duplicated(rownames(count_matrix)) | duplicated(rownames(count_matrix), fromLast = TRUE)), ]
tcga_matrix[[project]] <- count_matrix
}
Format the samples
table so that it can be fed as input
to DESeq2.
for (project in projects) {
rownames(samples[[project]]) <- samples[[project]]$cases
samples[[project]] <- samples[[project]] %>%
dplyr::select(case = "cases.submitter_id", type = "sample_type")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Solid Tissue Normal", "normal")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Primary Tumor", "tumor")
}
DESeq2 requires the row names of samples
should be
identical to the column names of count_matrix
.
for (project in projects) {
colnames(tcga_matrix[[project]]) <- gsub(x = colnames(tcga_matrix[[project]]), pattern = "\\.", replacement = "-")
tcga_matrix[[project]] <- tcga_matrix[[project]][, rownames(samples[[project]])]
# Sanity check
print(all(colnames(tcga_matrix[[project]]) == rownames(samples[[project]])))
}
For more detailed documentation on obtaining the gene set, refer to
7. Differential Gene Expression Analysis - TCGA - Pan-cancer - Unique Genes.Rmd
.
RCDdb <- "temp/unique_genes/necroptosis_ferroptosis_pyroptosis/"
Write utility functions for filtering the gene sets, performing differential gene expression analysis, plotting the results, and performing variance-stabilizing transformation.
filter_gene_set_and_perform_dgea <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
dds_rcd <- list()
res_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
dds$type <- relevel(dds$type, ref = "normal")
dds_rcd[[project]] <- DESeq(dds)
res_rcd[[project]] <- results(dds_rcd[[project]])
}
deseq.bbl.data <- list()
for (project in projects) {
deseq.results <- res_rcd[[project]]
deseq.bbl.data[[project]] <- data.frame(
row.names = rownames(deseq.results),
baseMean = deseq.results$baseMean,
log2FoldChange = deseq.results$log2FoldChange,
lfcSE = deseq.results$lfcSE,
stat = deseq.results$stat,
pvalue = deseq.results$pvalue,
padj = deseq.results$padj,
cancer_type = project,
gene_symbol = genes[rownames(deseq.results), "gene"]
)
}
deseq.bbl.data.combined <- bind_rows(deseq.bbl.data)
deseq.bbl.data.combined <- dplyr::filter(deseq.bbl.data.combined, abs(log2FoldChange) >= 1.5 & padj < 0.05)
return(deseq.bbl.data.combined)
}
plot_dgea <- function(deseq.bbl.data.combined) {
sizes <- c("<10^-15" = 4, "10^-10" = 3, "10^-5" = 2, "0.05" = 1)
deseq.bbl.data.combined <- deseq.bbl.data.combined %>%
mutate(fdr_category = cut(padj,
breaks = c(-Inf, 1e-15, 1e-10, 1e-5, 0.05),
labels = c("<10^-15", "10^-10", "10^-5", "0.05"),
right = FALSE
))
top_genes <- deseq.bbl.data.combined %>%
group_by(cancer_type) %>%
mutate(rank = rank(-abs(log2FoldChange))) %>%
dplyr::filter(rank <= 10) %>%
ungroup()
ggplot(top_genes, aes(y = cancer_type, x = gene_symbol, size = fdr_category, fill = log2FoldChange)) +
geom_point(alpha = 0.5, shape = 21, color = "black") +
scale_size_manual(values = sizes) +
scale_fill_gradient2(low = "blue", mid = "white", high = "red", limits = c(min(deseq.bbl.data.combined$log2FoldChange), max(deseq.bbl.data.combined$log2FoldChange))) +
theme_minimal() +
theme(
axis.text.x = element_text(size = 9, angle = 90, hjust = 1)
) +
theme(legend.position = "bottom") +
theme(legend.position = "bottom") +
labs(size = "Adjusted p-value", fill = "log2 FC", y = "Cancer type", x = "Gene")
}
perform_vsd <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
vsd_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
# Perform variance stabilization
dds <- estimateSizeFactors(dds)
nsub <- sum(rowMeans(counts(dds, normalized = TRUE)) > 10)
vsd <- vst(dds, nsub = nsub)
vsd_rcd[[project]] <- assay(vsd)
}
return(vsd_rcd)
}
Fetch the gene set of interest.
genes <- read.csv(paste0(RCDdb, "Pyroptosis.csv"))
print(genes)
genes$gene_id <- cleanid(genes$gene_id)
genes <- distinct(genes, gene_id, .keep_all = TRUE)
genes <- subset(genes, gene_id != "")
genes
Filter the genes to include only those in the gene set of interest, and then perform differential gene expression analysis.
deseq.bbl.data.combined <- filter_gene_set_and_perform_dgea(genes)
[1] "TCGA-COAD"
[1] "============="
Warning: some variables in design formula are characters, converting to factorsestimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 3 genes
-- DESeq argument 'minReplicatesForReplace' = 7
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
deseq.bbl.data.combined
Plot the results.
plot_dgea(deseq.bbl.data.combined)
Perform variance-stabilizing transformation for further downstream analysis (i.e., for survival analysis).
vsd <- perform_vsd(genes)
[1] "TCGA-COAD"
[1] "============="
Download clinical data from TCGA, and perform some preprocessing: -
The deceased
column should be FALSE
if the
patient is alive and TRUE
otherwise - The
overall_survival
column should reflect the follow-up time
if the patient is alive and the days to death otherwise
download_clinical_data <- function(project) {
clinical_data <- GDCquery_clinic(project)
clinical_data$deceased <- ifelse(clinical_data$vital_status == "Alive", FALSE, TRUE)
clinical_data$overall_survival <- ifelse(clinical_data$vital_status == "Alive",
clinical_data$days_to_last_follow_up,
clinical_data$days_to_death
)
return(clinical_data)
}
tcga_clinical <- list()
for (project in projects) {
tcga_clinical[[project]] <- download_clinical_data(project)
}
Write utility functions for performing survival analysis.
construct_gene_df <- function(gene_of_interest, project) {
gene_df <- vsd[[project]] %>%
as.data.frame() %>%
rownames_to_column(var = "gene_id") %>%
gather(key = "case_id", value = "counts", -gene_id) %>%
left_join(., genes, by = "gene_id") %>%
dplyr::filter(gene == gene_of_interest) %>%
dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "tumor")))
q1 <- quantile(gene_df$counts, probs = 0.25)
q3 <- quantile(gene_df$counts, probs = 0.75)
gene_df$strata <- ifelse(gene_df$counts >= q3, "HIGH", ifelse(gene_df$counts <= q1, "LOW", "MIDDLE"))
gene_df <- gene_df %>% dplyr::filter(strata %in% c("LOW", "HIGH"))
gene_df$case_id <- paste0(sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 1), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 2), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 3))
gene_df <- merge(gene_df, tcga_clinical[[project]], by.x = "case_id", by.y = "submitter_id")
return(gene_df)
}
compute_surival_fit <- function(gene_df) {
return (survfit(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
compute_cox <- function(gene_df) {
return (coxph(Surv(overall_survival, deceased) ~ strata, data=gene_df))
}
plot_survival <- function(fit) {
return(ggsurvplot(fit,
data = gene_df,
pval = T,
risk.table = T,
risk.table.height = 0.3
))
}
compute_survival_diff <- function(gene_df) {
return(survdiff(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
Perform survival analysis by testing for the difference in the Kaplan-Meier curves using the G-rho family of Harrington and Fleming tests: https://rdrr.io/cran/survival/man/survdiff.html
Our genes of interest are GSDMD (the primary executor of pyroptosis) and the differentially expressed genes.
significant_projects <- c()
significant_genes <- c()
ctr <- 1
for (project in projects) {
for (gene in c("GSDMD", genes$gene)) {
cat(project, gene, "\n\n")
error <- tryCatch (
{
gene_df <- construct_gene_df(gene, project)
},
error = function(e) {
cat("\n\n============================\n\n")
e
}
)
if(inherits(error, "error")) next
if (nrow(gene_df) > 0) {
fit <- compute_surival_fit(gene_df)
tryCatch (
{
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(ctr)
ctr <- ctr + 1
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
if (pchisq(survival$chisq, length(survival$n)-1, lower.tail = FALSE) < 0.05) {
significant_projects <- c(significant_projects, project)
significant_genes <- c(significant_genes, gene)
}
},
error = function(e) {
}
)
}
cat("\n\n============================\n\n")
}
}
TCGA-COAD GSDMD
[1] 1
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 1.33 0.334 0.602
strata=LOW 12 1 1.67 0.267 0.602
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.9181 0.3993 1.2253 -0.749 0.454
Likelihood ratio test=0.6 on 1 df, p=0.4378
n= 24, number of events= 3
============================
TCGA-COAD CHMP7
[1] 2
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 1.37 1.94 3.06
strata=LOW 12 1 2.63 1.01 3.06
Chisq= 3.1 on 1 degrees of freedom, p= 0.08
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.8282 0.1607 1.1780 -1.552 0.121
Likelihood ratio test=2.89 on 1 df, p=0.08925
n= 24, number of events= 4
============================
TCGA-COAD GSDMC
[1] 3
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 4.37 0.0309 0.0791
strata=LOW 12 4 3.63 0.0371 0.0791
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2172 1.2426 0.7737 0.281 0.779
Likelihood ratio test=0.08 on 1 df, p=0.778
n= 24, number of events= 8
============================
TCGA-COAD ELANE
[1] 4
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 2.17 0.320 0.566
strata=LOW 12 3 3.83 0.181 0.566
Chisq= 0.6 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.6750 0.5092 0.9141 -0.738 0.46
Likelihood ratio test=0.56 on 1 df, p=0.4543
n= 24, number of events= 6
============================
TCGA-COAD IRF1
[1] 5
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.78 0.160 0.497
strata=LOW 12 3 2.22 0.272 0.497
Chisq= 0.5 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6379 1.8926 0.9196 0.694 0.488
Likelihood ratio test=0.49 on 1 df, p=0.4822
n= 24, number of events= 6
============================
TCGA-COAD CYCS
[1] 6
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 3.04 0.356 1.09
strata=LOW 12 3 1.96 0.551 1.09
Chisq= 1.1 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.147 3.149 1.158 0.99 0.322
Likelihood ratio test=1.14 on 1 df, p=0.2864
n= 24, number of events= 5
============================
TCGA-COAD GSDMA
[1] 7
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 4.06 0.000756 0.00317
strata=LOW 12 2 1.94 0.001577 0.00317
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.05722 1.05889 1.01643 0.056 0.955
Likelihood ratio test=0 on 1 df, p=0.9551
n= 24, number of events= 6
============================
TCGA-COAD CASP4
[1] 8
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 5 4.12 0.186 0.446
strata=LOW 12 3 3.88 0.198 0.446
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5063 0.6027 0.7663 -0.661 0.509
Likelihood ratio test=0.44 on 1 df, p=0.5059
n= 24, number of events= 8
============================
TCGA-COAD BAK1
[1] 9
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 2.04 0.455 0.77
strata=LOW 12 2 2.96 0.313 0.77
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.7824 0.4573 0.9141 -0.856 0.392
Likelihood ratio test=0.75 on 1 df, p=0.3856
n= 24, number of events= 5
============================
TCGA-COAD NOD1
[1] 10
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 5 4.18 0.161 0.452
strata=LOW 12 2 2.82 0.239 0.452
Chisq= 0.5 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5757 0.5623 0.8677 -0.664 0.507
Likelihood ratio test=0.46 on 1 df, p=0.496
n= 24, number of events= 7
============================
TCGA-COAD NLRP7
[1] 11
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.77 0.215 0.401
strata=LOW 12 4 3.23 0.185 0.401
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.5422 1.7199 0.8671 0.625 0.532
Likelihood ratio test=0.41 on 1 df, p=0.5215
n= 24, number of events= 6
============================
TCGA-COAD CASP3
[1] 12
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.31 0.0424 0.102
strata=LOW 12 2 1.69 0.0582 0.102
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3187 1.3754 1.0046 0.317 0.751
Likelihood ratio test=0.1 on 1 df, p=0.7515
n= 24, number of events= 4
============================
TCGA-COAD GSDMB
[1] 13
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.1 0.00318 0.0106
strata=LOW 12 2 1.9 0.00518 0.0106
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1072 1.1131 1.0393 0.103 0.918
Likelihood ratio test=0.01 on 1 df, p=0.9178
n= 24, number of events= 5
============================
TCGA-COAD GZMB
[1] 14
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 2.58 0.0669 0.144
strata=LOW 12 2 2.42 0.0716 0.144
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3520 0.7033 0.9316 -0.378 0.706
Likelihood ratio test=0.15 on 1 df, p=0.703
n= 24, number of events= 5
============================
TCGA-COAD GSDME
[1] 15
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 2.16 0.625 1.37
strata=LOW 12 3 1.84 0.735 1.37
Chisq= 1.4 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.270 3.562 1.158 1.097 0.273
Likelihood ratio test=1.41 on 1 df, p=0.2352
n= 24, number of events= 4
============================
TCGA-COAD CHMP3
[1] 16
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 1.33 0.333 0.633
strata=LOW 12 2 2.67 0.167 0.633
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.9629 0.3818 1.2512 -0.77 0.442
Likelihood ratio test=0.63 on 1 df, p=0.4267
n= 24, number of events= 4
============================
TCGA-COAD DPP9
[1] 17
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 1.94 0.00159 0.00621
strata=LOW 12 1 1.06 0.00292 0.00621
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1116 0.8944 1.4164 -0.079 0.937
Likelihood ratio test=0.01 on 1 df, p=0.9372
n= 24, number of events= 3
============================
TCGA-COAD NOD2
[1] 18
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 2.5 0.901 1.86
strata=LOW 12 4 2.5 0.901 1.86
Chisq= 1.9 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.422 4.144 1.127 1.261 0.207
Likelihood ratio test=1.98 on 1 df, p=0.159
n= 24, number of events= 5
============================
TCGA-COAD NLRC4
[1] 19
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.28 0.0246 0.0827
strata=LOW 12 2 1.72 0.0472 0.0827
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2869 1.3323 1.0008 0.287 0.774
Likelihood ratio test=0.08 on 1 df, p=0.7747
n= 24, number of events= 5
============================
TCGA-COAD GSDMD
[1] 20
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 1.33 0.334 0.602
strata=LOW 12 1 1.67 0.267 0.602
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.9181 0.3993 1.2253 -0.749 0.454
Likelihood ratio test=0.6 on 1 df, p=0.4378
n= 24, number of events= 3
============================
TCGA-COAD TIRAP
[1] 21
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 3.12 0.405 0.849
strata=LOW 12 5 3.88 0.327 0.849
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7802 2.1820 0.8680 0.899 0.369
Likelihood ratio test=0.86 on 1 df, p=0.3535
n= 24, number of events= 7
============================
TCGA-COAD SCAF11
[1] 22
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 2.64 1.02 3.66
strata=LOW 12 3 1.36 1.99 3.66
Chisq= 3.7 on 1 degrees of freedom, p= 0.06
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.143e+01 2.020e+09 2.343e+04 0.001 0.999
Likelihood ratio test=4.78 on 1 df, p=0.02875
n= 24, number of events= 4
============================
TCGA-COAD NLRP6
[1] 23
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 4.39 0.0355 0.113
strata=LOW 12 3 2.61 0.0599 0.113
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2839 1.3283 0.8468 0.335 0.737
Likelihood ratio test=0.11 on 1 df, p=0.7375
n= 24, number of events= 7
============================
TCGA-COAD AIM2
[1] 24
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 3.21 0.193 0.438
strata=LOW 12 2 2.79 0.223 0.438
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5768 0.5617 0.8826 -0.653 0.513
Likelihood ratio test=0.45 on 1 df, p=0.5038
n= 24, number of events= 6
============================
TCGA-COAD CASP6
[1] 25
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.11 0.00421 0.00883
strata=LOW 12 4 3.89 0.00338 0.00883
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.07705 1.08009 0.81992 0.094 0.925
Likelihood ratio test=0.01 on 1 df, p=0.9251
n= 24, number of events= 7
============================
TCGA-COAD NLRP2
[1] 26
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.84 0.246 0.578
strata=LOW 12 3 2.16 0.322 0.578
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6869 1.9875 0.9206 0.746 0.456
Likelihood ratio test=0.57 on 1 df, p=0.4496
n= 24, number of events= 5
============================
TCGA-COAD IRF2
[1] 27
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 1.83 0.749 1.41
strata=LOW 12 1 2.17 0.631 1.41
Chisq= 1.4 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.2992 0.2727 1.1665 -1.114 0.265
Likelihood ratio test=1.45 on 1 df, p=0.2283
n= 24, number of events= 4
============================
TCGA-COAD PJVK
[1] 28
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.07 0.00182 0.00344
strata=LOW 12 4 3.93 0.00143 0.00344
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.04607 1.04715 0.78529 0.059 0.953
Likelihood ratio test=0 on 1 df, p=0.9532
n= 24, number of events= 7
============================
TCGA-COAD CASP5
[1] 29
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 2.57 0.0706 0.246
strata=LOW 12 1 1.43 0.1274 0.246
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.6015 0.5480 1.2310 -0.489 0.625
Likelihood ratio test=0.25 on 1 df, p=0.6159
n= 24, number of events= 4
============================
TCGA-COAD NLRP1
[1] 30
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 4.58 0.0729 0.194
strata=LOW 12 4 3.42 0.0975 0.194
Chisq= 0.2 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3383 1.4026 0.7710 0.439 0.661
Likelihood ratio test=0.19 on 1 df, p=0.659
n= 24, number of events= 8
============================
TCGA-COAD CASP9
[1] 31
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.69 0.128 0.38
strata=LOW 12 3 2.31 0.204 0.38
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.5564 1.7444 0.9139 0.609 0.543
Likelihood ratio test=0.38 on 1 df, p=0.5377
n= 24, number of events= 6
============================
TCGA-COAD PLCG1
[1] 32
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.19 0.0170 0.0386
strata=LOW 12 3 2.81 0.0133 0.0386
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1987 1.2198 1.0133 0.196 0.845
Likelihood ratio test=0.04 on 1 df, p=0.8446
n= 24, number of events= 5
============================
TCGA-COAD IL18
[1] 33
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 5 4.7 0.0196 0.0546
strata=LOW 12 3 3.3 0.0279 0.0546
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1811 0.8343 0.7764 -0.233 0.816
Likelihood ratio test=0.05 on 1 df, p=0.8149
n= 24, number of events= 8
============================
TCGA-COAD DPP8
[1] 34
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 1.63 0.245 0.537
strata=LOW 12 4 3.37 0.119 0.537
Chisq= 0.5 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.870 2.387 1.225 0.71 0.478
Likelihood ratio test=0.54 on 1 df, p=0.4626
n= 24, number of events= 5
============================
Display the results only for genes where a significant difference in survival has been reported.
significant_genes
NULL
num_significant_genes <- length(significant_genes)
if (num_significant_genes > 0) {
for (i in 1 : num_significant_genes) {
project <- significant_projects[[i]]
gene <- significant_genes[[i]]
cat(project, gene, "\n\n")
gene_df <- construct_gene_df(gene, project)
fit <- compute_surival_fit(gene_df)
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
cat("\n\n============================\n\n")
}
}
De La Salle University, Manila, Philippines, gonzales.markedward@gmail.com↩︎
De La Salle University, Manila, Philippines, anish.shrestha@dlsu.edu.ph↩︎